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A New Deep Learning-Based Food Recognition

System for Dietary Assessment on An Edge
Computing Service Infrastructure

Abstract—Literature has indicated that accurate dietary assessment is very important for assessing the effectiveness of weight loss
interventions. However, most of the existing dietary assessment methods rely on memory. With the help of pervasive mobile devices
and rich cloud services, it is now possible to develop new computer-aided food recognition system for accurate dietary assessment.
However, enabling this future Internet of Things-based dietary assessment imposes several fundamental challenges on algorithm
development and system design. In this paper, we set to address these issues from the following two aspects: (1) to develop novel
deep learning-based visual food recognition algorithms to achieve the best-in-class recognition accuracy; (2) to design a food
recognition system employing edge computing-based service computing paradigm to overcome some inherent problems of
traditional mobile cloud computing paradigm, such as unacceptable system latency and low battery life of mobile devices. We have
conducted extensive experiments with real-world data. Our results have shown that the proposed system achieved three objectives:
(1) outperforming existing work in terms of food recognition accuracy; (2) reducing response time that is equivalent to the minimum of
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the existing approaches; and (3) lowering energy consumption which is close to the minimum of the state-of-the-art.

Index Terms—Mobile applications, object recognition, deep learning, edge computing, food recognition

1 INTRODUCTION

N the US, more than one-third (34.9 percent or 78.6 mil-

lions) of adults are obese and approximately 17 percent
(or 12.7 millions) of children and adolescents aged 2 to
19 years are obese [1]. There were more than 1.9 billion
adults, 18 years and older, were overweight on earth in 2014
[2]. Documenting dietary intake accurately is crucial to help
fight obesity and weight management. Unfortunately, most
of the current methods for dietary assessment (for example,
24 hour dietary recall [3] and food frequency questionnaires
[4]) must rely on memory to recall foods eaten.

In the last few years, we have witnessed an explosive
increase of mobile and wearable computing devices (e.g.,
the smart watch and smart phone) in the consuming elec-
tronics market. One common characteristic of these devices
is that many of them have inexpensive, unobtrusive and
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multimodal sensors. These sensors enable us to collect
multimedia data (e.g., video and audio) in natural living
environments. Due to the ubiquitous nature of mobile and
wearable devices, it is now possible to use these devices to
develop pervasive, automated solutions for dietary assess-
ment [5], [6], [7], [8], [9], [10], [11]. One example of such sol-
utions is to use mobile devices as a pervasive food journal
collection tool and to employ cloud service as a data analy-
sis platform. The combination of mobile device and cloud
service could contribute to improving the accuracy of die-
tary assessment. As a result, in the last few years, we have
seen several mobile cloud software solutions [12], [13], [14]
to improve the accuracy of dietary intake estimation. One
common issue among these solutions is that the users of the
software must enter what they have eaten manually. To
address this issue, visual-based food recognition algorithms
and systems have been proposed [6], [7], [8], [9], [10], [11].
A recent review by Martin et al. [15] also indicated that
using digital imaging techniques for food recognition is
superior to many other methods of dietary assessment tech-
niques. Some advantages of visual-based food recognition
systems include: reduced burden for users to recall the
food, improved accuracy and efficiency of dietary recall.
While promising, one of the major barriers of adopting
automatic dietary assessment system into practice is how to
design and develop effective and efficient algorithms and
system to derive the food information (e.g., food type) from
food images. Considering the limited computation resour-
ces and low battery life on mobile device, it is more chal-
lenging to develop such a system within the mobile cloud
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computing paradigm. We have carefully investigated this
problem and have identified two major challenges. The first
major challenge is how to design effective and efficient ana-
lytics algorithms to achieve optimal recognition accuracy.
The second major challenge is how to develop a system that
can minimize energy consumption and response time.

To address the first issue (recognition accuracy), we plan
to develop new deep learning-based algorithms. Deep learn-
ing [16], [17] (also known as representation learning, feature
learning, deep structured learning, or hierarchical learning)
is a new area of machine learning research. It allows compu-
tational models that are composed of multiple processing
layers to learn representations of data with multiple levels of
abstraction [18]. In the last five years, these techniques have
improved the state-of-the-art in speech recognition, com-
puter vision, natural language processing, and many other
domains. Our extensive experiments in this paper have
shown that, compared with —traditional hand engineered
features (e.g., SIFT [19]) and shallow learning-based classi-
fication algorithms (e.g., Support Vector Machine (SVM)),
our proposed deep learning-based classification algorithms
could improve the recognition accuracy substantially.
We also developed other image analysis algorithms
to enhance the food image quality for data analysis. All these
algorithms have been integrated into an edge computing-
based real-time computing system, which is discussed in the
next paragraph.

To address the second issue (energy consumption and
response time), we aim to design and employ a real-time
food recognition system employing edge computing service
paradigm. The proposed system distributes the data analyt-
ics throughout the network by splitting the food recognition
task between the edge devices (close to end users) and the
servers (in the cloud). Edge computing refers to the enabling
technologies that allow computation to be performed at the
edge of the network in a stream fashion. Edge computing is a
non-trivial extension of cloud computing from the core net-
work to the edge network [20], [21], [22], [23], [24], [25], [26].
The proposed edge computing service infrastructure is par-
ticularly useful for our application because most of the
mobile devices have limited computation capacity and bat-
tery life. Hence, it is difficult for them to support computa-
tional-intensive tasks. At the same time, our proposed food
image analysis algorithms usually involve heavy computa-
tion and may require much more computation resources.

In this paper, we focus on two major research efforts. The
first research effort aims to develop new food recognition
algorithms, including new food image recognition algo-
rithms based on deep learning and image pre-processing
and segmentation algorithms to enhance the quality of food
image. The second research effort aims to design a real-time
food recognition system for dietary assessment. The pro-
posed system employs edge computing service paradigm
and distributes the data analytics throughout the network.
Specifically, the proposed system will split the food recogni-
tion tasks between the edge devices (which is physically
close to the user) and the server (which is usually located
in the remote cloud). For example, in our system, the edge
devices (e.g., user’s smart phone) can perform light-weight
computation on food image for food recognition. Then, our
system will transmit the food images (after the light-weight
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computation at edge device) to the server in the cloud to per-
form more accurate recognition tasks. By distributing the
analytics throughout the network, our system can achieve
significant improvement in the recognition accuracy, while
minimizing the response time and energy consumption. In
this project, we implemented a prototype system to verify
our hypothesis and evaluate the proposed algorithms. Our
prototype runs on both edge device (Xiaomi Note, running
Android 6.0.1 “marshmallow”) and server (an in-house GPU
cluster). We also conducted extensive experiments with real-
world data. The results show that our system achieves very
impressive results on the following three aspects. First, to the
best of our knowledge, the food recognition accuracy using
our proposed approach outperformed all other reported
results. Second, the response time of the proposed system is
equivalent to the minimum of the existing approaches. Last
but not the least, the energy consumption of the proposed
system is close to the minimum of the state-of-the-art.

The rest of the paper is organized as follows. In Section 2,
we introduce related work in computer-aided dietary
assessment, visual-based food recognition, deep learning,
and edge computing. In Section 3, we present the architec-
ture, components, and algorithms for the proposed system
based on deep learning and edge computing. In Section 4,
we describe the implementation details of our system. Sec-
tion 5 presents the evaluation results, which include recog-
nition accuracy, power consumption, response time, etc.
Section 6 discusses the system limitations. In Section 7, we
make concluding remarks.

2 RELATED WORK

Estimating dietary intake accurately with a high-quality food
journal is crucial for managing weight loss [27]. Unfortu-
nately, due to many technical barriers, how to improve the
accuracy of dietary intake estimation is still an open ques-
tion. In this paper, we aim to develop a systematic approach
as a first step to address this issue. We envision that there are
four most relevant research areas, listed as below.

The first related research area is to enhance the accuracy
of diet assessment with computer-aided solutions. Due to
the recent advances in electronics, it is now possible to
develop computer-aided solutions to transform healthcare
from reactive and hospital-centered to preventive, proactive,
evidence-based, person-centered. Dietary assessment is one
such area that has gained a lot of attentions from both acade-
mia and industry. Among thousands of existing mobile
cloud health software and hardware, we have seen many
of them (e.g., MyFitnessPal [12], MyNetDiary [13], and Fat-
Secret [14]) are dedicated for improving the accuracy of die-
tary estimates. However, all these applications require the
user to enter everything they ate manually. To address this
issue, several applications have been developed to improve
the level of automation. For example, a recent App entitled
“Meal Snap” [28] aims to reduce human efforts by asking the
user to take a picture, enter some quick information such as
whether user is eating breakfast or lunch, and add a quick
text annotation if the user wants to. Unfortunately, the accu-
racy of calorie estimation is heavily dependent on the accu-
racy of the manually entered text from user. Therefore, the
accuracy is very unstable. Another example of such applica-
tion is named “Eatly” [29]. This application requires the user
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to take the food image and then rates the food into one
of the three categories (“very healthy”, “it's O.K.”, and
“unhealthy”). However, the actual rating is performed man-
ually by the community, which consists of the users of this
App. In this paper, we propose new algorithms and system
that can recognize the food images (caputred by the user
with their mobile devices) automatically. This automation
reduces the user’s burden substantially.

The second related research area is to perform dietary
analysis using food images and/or videos. In one paper [6],
researchers proposed an approach to combine a learning
method (manifold ranking-based techniques) and a statis-
tics method (co-occurrence statistics between food items) to
recognize multiple food items. In another study [7], the
authors proposed a method for fast food detection by
researching the relative spatial relationships of local fea-
tures of the ingredients and a feature fusion technique. NIH
also funded a project named “Technology Assisted Dietary
Assessment (TADA)” [11]. Researchers under this project
have investigated different aspects of computer-aided die-
tary assessment, such as food item recognition, mobile inter-
face design, and data development for food images. They
have published several papers on food image recognition
[8], [9], [10]. Most of the existing visual-based food recogni-
tion algorithms employed traditional signal processing with
hand-engineered features (e.g., SIFT [19], HOG [30]) and
shallow machine learning algorithms (e.g., SVM). Only very
recently, with the striking success of deep learning, people
started to research the application of deep learning for food
image recognition [31]. Deep learning has the potential to
address one main issue associated with existing techniques,
which is that the hand engineered features may be useful
for screening a few categories of food item but are unable to
generalize to other food types. The proposed approach in
this paper is also based on recent advances in deep learning.
Related work in deep learning is introduced in the next
paragraph.

The third related field is deep learning, which is a branch
of machine learning. It allows the computers to learn from
experience and understand the world in terms of a hierarchy
of concepts using a deep graph with multiple processing
layers. Each concept is defined in terms of its relation to sim-
pler concepts [32]. Essentially, deep learning is trying to
solve the central problem in representation learning by intro-
ducing representations that are expressed in terms of other,
simpler representations [32]. It has already been proven
useful in many disciplines, such as computer vision, speech
recognition, natural language processing, bioinformatics,
etc. There are two main classes of deep learning techniques.
The first class is purely supervised learning algorithms,
such as Deep Convolutional Neural Network (CNN).
The second class is unsupervised and semi-supervised learn-
ing algorithms, such as Denoising Auto-encoders and Deep
Boltzmann Machines. In this paper, we focus on deep Con-
volutional Neural Network (CNN) [33]. Our proposed
approach is rooted from CNN and it belongs to the category
of supervised learning algorithms. CNNs are biologically-
inspired [34] (animal visual cortex) variants of Multilayer
Perceptrons (MLPs). It is consisted of neurons that have
learnable weights and biases. Compared with MLPs, CNN
has several distinct features. First, by enforcing a local

connectivity pattern between neurons of adjacent layers,
CNN could exploit spatially local correlation. Second, each
filter in CNN is replicated across the entire visual field,
which share the same parameters (e.g., weight vector and
bias). Third, the neurons are arranged in three dimensions
(width, height, and depth). Furthermore, a feature map can
be generated by repeated application of a function across
sub-regions of the whole image. Early implementation of
CNNs, such as LeNet-5 [35], has been successfully applied to
hand writing digital recognition. However, due to the lack of
large scale labeled data and limited computation power,
CNN:s failed to address more complex problems. With the
help of large-scale and well-annotated dataset like ImageNet
[36], new computing hardware such as graphics processing
unit (GPU), and several algorithms advancements such as
Dropout [37], it is now possible to train large scale CNNs
for complex problems. Recently, many research, such as
VGGNet [38], ZFNet [39], GoogLeNet [40], Residual Net-
work [41], has been proposed to address the issue of limited
abilities of feature representation. One common strategy is to
make the network deeper and avoid saturation issues. Our
proposed approach was directly inspired by CNN work
from LeNet-5 [42], AlexNet [33], and GoogLeNet [40]. The
LetNet-5 [42] is a 7-layer network structure with 32x32 grey-
scale image as input for hand written digital recognition. It
includes three convolutional layers (C1, C3 and C5), two
sub-sampling layers marked as (S2, 54), one fully connected
layers (F6), and one output layer. LeNet-5 generates a feature
map and feed the feature map into the two fully-connected
layers. After that, a 10-class output is generated. A receptive
field (a.k.a. “fixed-size patch” or “kernel”) is chosen during
the convolutional layer to compute convolution with the
same size patch in the input image. A stride is defined to
make sure every pixel in the original image will be covered.
The system will perform convolution operation first, fol-
lowed with a sub-sampling with the feature map. The goal of
sub-sampling is for dimension reduction. Then, we will
move to the fully connected layers, which are used to join the
multi-dimension feature maps. Finally, we will generate a
ten-class output, each of which represents one digital (from
zero to nine). Please note, at each layer, the parameters (e.g.,
weight vector and bias) are trainable. Recent progresses in
CNN have focused on enhancing the object representation
with more complex models. For example, AlexNet [33] is a
seven-layer model which includes five convolution layers
and two fully connected layers. It outperformed the state-of-
the-art object recognition techniques in 2012 ImageNet [36]
challenges with large margin (over 10 percent). Later on,
we witnessed many new models with increased layers,
increased layer size, more complex neurons, as well as
sophisticated computation units and layer structures. Drop-
out and ReLU were proposed to address the issue of overfit-
ting and saturation, respectively. Some excellent examples
include VGG net [38], ZFNet [39], GoogLeNet [40], Residual
Network [41]).

The last (but not the least) related research area is edge
computing service infrastructure [22], [23], [24], [25], [26].
Under this infrastructure, part of the data processing tasks
may be pushed to the edge of the network. One of the core
ideas is called “Collaborative Edge” [22], which refers to the
architecture that connects the edges of multiple stakeholders.



252 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11,

Socdt
o *
g es
L S

_PD_—’—)

Mobile Device (Edge Layer)
*  Image Preprocessing
= Image Segmentation

Visual Sensor (End user Layer)
= Food Image Capturing

Server (Cloud Layer)
+  Pre-train/fine-tune CNN Model
* Image Classification

Fig. 1. Overview architecture of our proposed “Deep Food on the Edge”
system.

These stakeholders may be geographically distributed
and they may have distinct physical location and network
structure. Under this infrastructure, the cloud paradigm is
extended to the edge of the network. Therefore, such an edge
computing service infrastructure offers a unifying paradigm
for cloud-based computing and Internet of Things (IoT)-
based computing. It has the potential to address the issues of
delayed response time, reduced battery life, limited band-
width, and data security and privacy. However, most of the
existing use cases of edge computing-based digital health
applications [43], [44], [45] are relatively simple examples
with small data sets. Novel user cases and intriguing applica-
tions with more challenging tasks, such as larger data sets
and sophisticated computation, are needed for evaluating
the efficacy and effectiveness of edge computing in digital
health. Our proposed application, which focuses on food
image recognition for dietary assessment, employ very com-
plicated computation tasks (e.g., image pre-processing,
image segmentation, and deep learning) with large image
data sets (in the size of GB). This application scenario pro-
vides an excellent playground to evaluate the efficacy and
effectiveness of edge computing in digital health.

3 SysTEM DESIGN

3.1 Overview

Our food recognition system employs visual sensors to cap-
ture food images as the source data. Due to the recent advan-
ces of electronics, visual sensors are now available in many
Internet-of-Things(IoT) devices, such as smart phones. To
simplify the design, we utilized the camera on smartphones
for visual sensing. Besides the smartphone for sensing and
image capturing, the recognition is done in a collaborative
manner between the edge device (e.g., smartphone) and serv-
ers (e.g., servers in the cloud). As shown in Fig. 1, our system
includes end user layer (left most of Fig. 1), edge layer (mid-
dle of Fig. 1), and cloud layer (right most of Fig. 1), together
form a three-layer service delivery model. In our proposed
system, data and computation are kept close to end users at
the edge of network. Also, the end user’s device can passively
record the geological location. Hence, the system could pro-
vide low latency, reduced energy consumption, and location-
awareness for end users. The computations are distributed
throughout the network, including both the edge devices
and servers in the cloud. Please note, in our system, the recog-
nition is done in a collaborative manner.

The system design and related components are shown in
Fig. 2. As shown in this figure, our system consists of the fol-
lowing three major modules:

Front-end Component (FC). we deploy the FC module on
the edge device (smartphone). As shown in the top box in
Fig. 2, it's consisted of three submodules, which are image
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CNN (Cloud Layer)

Features

Classification ~ CNN Model

Fig. 2. System design and components.

pre-processing (e.g., blurry image detection), watershed
detectors, and the filters (OTSU or threshold)-based seg-
mentation. After the image pre-processing module, an origi-
nal clear image is generated for segmentation. Next, the
watershed detector, combined with different filters (e.g.,
OTSU-based threshold) to segment the original image. After
segmentation, we can generate the clear and segmented
image. These images will be transferred to the server via the
Communication Module (introduced below) for further
classification.

Communication Component (CC). CC provides two chan-
nels for communication between the FC and the Back-end
Component (BC), which will be introduced in more detail
in the next paragraph. It transfers the image data from the
FC to the BC via Input Channel, and it also passes the detec-
tion results from the BC to the FC via Output Channel.

Back-end Component (BC). the BC module runs on the cloud
server, which is configured to use Caffe [46] (an open source
deep learning framework) for CNN model training and test-
ing. We use pre-trained GoogLeNet by ImageNet and fine-
tune it on our food dataset (UEC-256 and Food-101). Then the
trained model is deployed on the server and used for classify-
ing the image. More specifically, the segmented image is first
passed through our proposed CNN model (which is rooted
from GoogLeNet model [40]), then the features are generated
from the model, furthermore, a softmax classifier is used
with these features to generate the probability of each cate-
gory. Here we use the top-5 and top-1 probability as our pre-
diction/classification of the food image. Our evaluation of
accuracy is also based on these criteria.

3.2 Food Recognition Algorithms

In this section, we will introduce our proposed food recog-
nition algorithms, which runs on the FC and BC. Essentially,
our system is a multiple-stage food recognition system that
distributes the analytics throughout the network.

3.2.1 Food Image Analysis Algorithms Running at FC

Once the food images are captured, we will conduct two
types of computations at mobile device in the Front-end
Component (FC) (a.k.a., Edge Layer): image pre-processing
and image segmentation.

The main objective of the first computation (image pre-
processing) is to identify if the image being captured is
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blurry or not. While many cameras on mobile devices have
features such as optical zoom or auto focusing, in real-world
practice, when users take the pictures of food, they may
have very limited time to do so due to their busy schedule
and their photo taking action may be interrupted by other
matters. Hence, the chances of device shaking and other
interruptions while taking pictures are high. An automatic
image blurry detection algorithm running at the mobile
device is needed to give a real-time alarm to reminder user
to re-take the picture if the image is blurry. We define an
out-of-focus image as blurry image. Our goal is to develop a
light weight and effective blurry image detection algorithms
running at the mobile device. In literature, image restoration
has been proposed to handle blurry images. Unfortunately,
these existing methods are not applicable to our case
because these techniques need a reference image to com-
pute the quality of the test image. In our applications, we
may only have test images. Followed our previous research
[47], we propose a simple-feature(such as “edginess” of the
image) and threshold-based method to divide the images
captured into two groups (i.e., the clear image group and
the blurry image group). The “edginess” of the image is
defined as the number of edge pixels (e.g., detected by Sobel
operator) divided by the total number of image pixels. The
rationale behind this method is that the percentage of edge
pixels for clear image (with clear object of interests) is much
higher than the percentage of edge pixels for blurry image.
In our previous research [47], we also noticed that there are
different patterns between the frequency spectrums of clear
image and blurry image. The Fourier spectrum of a blurry
image usually shows prominent components along the cer-
tain degree (e.g., 45 degree) directions that correspond to
the corners of the image. This is because the blurry image
usually does not contain clear object information except the
four strong edges at the corners of the image running at cer-
tain degree relative to the sides. On the other hand, the clear
image usually has a lot of clear edge information so that its
spectrum does not show prominent components along
certain degree directions because it has a wider range of
bandwidth from low to high frequencies. Based on the
aforementioned observation, we first employ texture analy-
sis algorithms on the frequency spectrum image. Then we
extract different types of texture features (e.g., entropy, con-
trast, correlation, homogeneity) from each image. Once the
features are extracted, we employ different types of classi-
fiers to classify the images into two categories (blurry image
or clear image). Similar to our previous work [47], we
employ a two-step K-means clustering algorithms, the
details is illustrated in the Algorithm 1.

The main objective of the second computation (image
segmentation) is to segment the image into two parts: fore-
ground (which contains the actual food) and background.
Based on the size of foreground, we could crop the image
by removing some portion of the background that does not
overlap with foreground. According to our own experi-
ments and other people research results, when using deep
learning-based model (which is the main algorithms used
in server) for image analysis and object detection, if we
could reduce the background information, the object
detection and recognition accuracy could be improved.
Inspired by this observation, we employ watershed [48]

segmentation algorithm to preprocessing the image at FC.
In this process, we first pre-process the image by image seg-
mentation. Then we generate a new cropped image and
send the updated image to the server in the cloud for fur-
ther processing. By doing so, we can achieve the following
performance improvements: (1) the volume of data transfer
over the network may be reduced substantially. It also
reduces the power consumption caused by network trans-
ferring; (2) The response time may be reduced by shorter
transmission time, which will improve the user experiences;
(3) The system uses much less network flow consumption,
which is very helpful when the network connection is unre-
liable, or when the user is connected to the server via cellu-
lar network and/or he or she has limited data plan with the
mobile device; (4) More importantly, the cropped image
will eliminate the abundant information and further
improve the accuracy for classification. In theory, the water-
shed algorithm is based on the following observations: any
grayscale image can be viewed as a topographic surface, in
which the high intensity indicates peaks and hills while low
intensity represents valleys. The watershed algorithm starts
filling every isolated valley with different colored water.
When water rises, water from different valleys with differ-
ent colors will start to merge. We could avoid this by build-
ing barriers in the locations where water merges. The
algorithm continues to fill water and build barriers until all
the peaks are under water. Finally, the barriers the system
created are the segmentation result. Algorithm 2 illustrates
the details of the algorithm.

Algorithm 1. Image Pre-processing in the Front-end
Component(FC)

Data: A set of Images Set : {I1,15,...,1I,}
Result: Two clusers Sety, : {b1,ba,..., by}, Set. : {c1,co, ..
initialization, setito 1 ;
while i is no more than n do
Read one image I;;
Extract texture features 7; from frequency spectrum;
Apply entropy feature extraction from 7; as Si;
Apply contrast feature extraction from 7; as Ss;
Apply correlation feature extraction from 7; as S;
Apply homogeneity feature extraction from 7; as Sy;
Use binary classifier for S;, Sy, S3, Sy separately;
Combine classification result using majority vote;
if blurry then
group I; into the Sety;
else
group I; into the Set,;
end
go to next iteration;

o

end

3.2.2 CNN-based Food Image Analysis Algorithms
Running at BC

After the image pre-processing and segmentation at FC, we
will further analyze these images at BC. Our proposed
approach running at BC is based on the recent advances on
deep learning, which aims to learn multiple levels of repre-
sentation and abstraction that help infer knowledge from
data such as images, videos, audio, and text.
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Fig. 3. lllustration of the “Inception Module”. Figure (a) in the left is the snapshot of the original network architecture in regular CNN, such as AlexNet.
Figure (b) in the right is the snapshot of the new network architecture with “Inception Module”. The figure is best viewed in color.

Algorithm 2. Image Segmentation in the Front-end
Component(FC)

INPUT: The lower complete grey scale Image (V, E, im), which
is defined from original image with a lower boundary
OUTPUT: a sequence of labels on V, representing background
or foreground
1: WATERSHED « 0 > (The label of watershed for every
pixel)
2: Init Label with a minima and MASK for other pixels
3: U« {p € V|3 € Ng(p): im[p] # im[q]}
4: while not empty(U) do

5 select point p from U with minimal grey value
6: remove p from U
7 for all g steeper than p do [> (pixel value is greater in the
neighbour)
8: if label[g] == MASK then
9: label[q] — label[p]
10: else
11: labellq) «— WATERSHED
12: end if
13: end for

14: end while > (Label array represents the boundary)

Our proposed approach was directly inspired by CNN
work from LeNet-5 [42], AlexNet [33], and GoogLeNet [40],
and it employs a new module called “Inception Module”,
which is motivated by recent advances named “Network-in-
Network” [49]. This is also similar to the one used in GoogLe-
Net [40]. In this “Inception Module”, an additional 1x1 con-
volutional layers are added to the original AlexNet [33]
network architecture. This additional layer undoubtedly
increases the depth of the network. However, this addition
could also substantially reduce the feature map’s dimension.
Therefore, this module could help to remove the computa-
tion bottlenecks. Specifically, we use feature map as the input
for the “Inception Module”. After that, we apply multiple
levels of convolutional layers and max-pooling layers. The
kernel size of the convolutional layer varies from 1x1 to 3x3
and 5x5. At each layer, different outputs are generated and
are concatenated to form the new feature map, which is used
as input for the convolution and pooling operation for next
layer. In order to perform dimension deduction, an opti-
mized convolution is proposed based on the “Inception
Module”. Please note, instead of feeding the input directly

into the convolutional layer, an additional convolutional
layer with size 1x1 is added to reduce the input dimension.
In addition, the output from the 3x3 max-pooling layer is
sent into an additional convolutional layer with size 1x1.
These new designs enable the new architecture to reduced
dimension even the depth of the network is increased. Not
surprisingly, our experiments have demonstrated that, even
under constrained computational complexity, this new net-
work structure is able to enhance the ability to capture more
visual information. Fig. 3 illustrates the improved inception
module. The network structure in the left (Fig. 3a) is the orig-
inal structure in regular CNN, such as AlexNet [33]. The
right figure (Fig. 3b) is the snapshot of the new network
architecture with “Inception Module”. As shown in Fig. 3b,
the three added 1x1 convolutional layers are annotated with
dotted rectangle and green color. While the number of layers
in Fig. 3b is four (which is one layer more than the number of
layers in Fig. 3a), the total dimension of the output (at feature
concatenate layer) in Fig. 3b is still smaller than the output
dimension of Fig. 3a.

The next step after forming the “Inception Module” is to
employ multiple modules to form the network (similar to
GoogLeNet). In this step, we will connect the two modules
using one additional max pooling layer. The output from the
previous module will be used as the input for the next mod-
ule. Specifically, the concatenated features (output) from the
previous module are fed into the newly added max pooling
layer. The output from the max pooling layer is used as input
for next module. Fig. 4 illustrate this architecture. This figure
includes two “Inception Module”, one (figure “a”) is located
on the top of Fig. 4 and another (figure “b”) is located in the
bottom of the Fig. 4. These two components (figure “a” and
figure “b”) are connected via a 3x3 max-pooling layer. Essen-
tially, the new network architecture becomes a hierarchical
level step by step. In order to address the issue of increased
time complexity associated with the increased network
layers, we resort to the lessons learned in recent paper [50],
which offer some insights for designing the network archi-
tectures by balancing factors such as depth, numbers of fil-
ters, filter sizes, etc. In this study, we design a network
structure with 22 layers (similar to the one used in GoogLe-
Net) with different kernel size and stride. We have found
that, in our study, using an input size of 224x224 with three
channels (RGB), combined with “1x1”, “3x3” and “5x5”
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Fig. 4. lllustration of module connection (best viewed in color).

convolutions, produces the best results. The 22 layers are
layers with parameters. We design the pooling layer whose
filter size is 5x5. The convolutional layer is 1x1 and includes
128 filters and ReLU (rectified linear activation). The dimen-
sion of the fully-connected layers is 1024. During pre-train-
ing stage, it is mapped into a 1,000-class output, similar to
the ImageNet data set [36]. We use a 70 percent dropout rate
to address the overfitting issue. Softmax is used for final clas-
sifier. Please note, based on the actual food categories, we
will need to adjust the output class number during the fine-
tuning stage. The proposed approach is implemented on top
of open source deep learning framework Caffe [46]. CentOS
7.0 is chosen as our host system. We also use NVidia Tesla
K40 GPUs for model training. The model definition is
adjusted in prototxt file in Caffe. We will introduce the
implementation details in Section 4.

4 SYSTEM IMPLEMENTATION

In order to verify the efficacy and effectiveness of the pro-
posed system, we implemented a prototype system for food
recognition. Specifically, the front-end component (FC) is
implemented on Android 6.0.1 (Marshmallow). The back-
end component (BC) is implemented using server equipped
with CentOS 7.0. The implementation of communication
component (CC) includes two part. The first part is on the
smartphone where we use Apache HttpClient to communi-
cate with server. The second part is on the server we
employed Django web development framework [51] and
the associated RESTful web service. In this section, we pres-
ent implementation details.

4.1 Implementation of Front-End Component (FC)

We develop an Android application for the front-end
module. It runs on Xiaomi Note running Android 6.0.1
marshmallow. The image pre-processing algorithm, the
watershed segmentation algorithm, and the threshold fil-
ter are also implemented in this application. The water-
shed algorithm runs on the local mobile devices and it is

LOADPICTURE  SEMD SEQMENTS

segment

Fig. 5. Screenshots showing image segmentation implementation in FC
module.

implemented using OpenCV [52] on Android devices.
Several pre-defined markers are first constructed, the
algorithm treats each pixel as a local topography, and
then it fills the basins from the markers, until the basins
meet on watershed lines. Here we set the markers as the
local minimal of the food image, so that we can start from
the bottom to fill the basins. We use OpenCV 3.10 and
port the java SDK into the android studio project, which
supports the OpenCV for Android SDK and also involves
the image processing class.

The App we implemented has an UI for processing and
loading the image. A screenshot of the Ul is shown in Fig. 5.
There is a background thread for preprocessing the image.
After it finishes, the App will display the segmented image
in the application’s mainframe. While in the background,
the thread does several tasks when preprocessing the
image, that includes: (1) rescaling the image if it's exceed
1024x786, since too large image will increase the computing
time and energy consumption; (2) converting the RGB
image to grey level image for further image processing, the
grey image is more easily computed when there’re many
channels and pixels; (3) creating the watershed class and
watershed threshold for dividing the image into segments
and non-segments; (4) saving and generating a unified
image segments for future transferring.

4.2 Implementation of Communication

Component (CC)

There are two implementations for communication between
the Android device and cloud server. For the Android
application, we use Apache HTTP Client and construct the
HTTP POST request to send the segmented image into the
cloud server (As shown in Fig.6). First, a connection bound
to the server is established, and then we construct the neces-
sary HTTP header, and fill the content with image file. Then
we send the POST request to the cloud server to finish the
transmission. On the cloud server, we deploy a RESTful
web server using Django [53], which supports the file trans-
ferring (image, audio, video) using HTTP requests. When
the server is up and deployed, it will listen to the port and
save the requested file into the pre-configured destination.
Our server will store all the necessary segments for the clas-
sification task using trained-well CNN models.
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Fig. 6. Screenshot showing segmented images being uploaded to the
server in CM module.

4.3 Implementation of Back-End Component (BC)
Our back-end system is mainly used for classification when
we receive the images from the mobile device. Before test-
ing, we used pre-trained GoogLeNet model from ImageNet,
and then fine-tuned on public food data set like Food-101
and UEC-100/UEC-256. After these steps, a fine-grained
model is generated which can be used for specifically food
image classification. We use Caffe to train and tune the
model. And our deployment of model is also based on
Caffe’s python interface. We first load the model into mem-
ory, when the test food image is fed into the Convolutional
neural network as the input, CNN features are extracted,
with max-pooling and rectified linear-unit (ReLU) layers for
dimension reduction and accelerating the convergence of
computing.

5 PERFORMANCE EVALUATION

5.1 Experiment Setup and Evaluation Data Set

In all the following experiments, we use Xiaomi Note run-
ning Android 6.0.1 “Marshmallow” as the front-end to
install the FC of our system. This smartphone uses Qual-
comm MSM8974AC Snapdragon 801 featuring Quad-core
2.5 GHz Krait 400 and an Adreno 330 GPU. It also has a 64
GB of internal storage and 3 GB of RAM. In the back-end,
we use an in-house GPU server. This server is a SuperServer
4027GR-TR from SuperMicron. It has two Intel Xeon proces-
sor E5-2600 with 512GB RAM. This server is also equipped
with four NVIDIA Tesla K40 GPU.

In order to evaluate the effectiveness and efficiency of
our system, we implemented two other systems running
the state-of-the-art visual-based food recognition algorithms
for comparisons. The first one, entitled as C-System,
employs different types of computer vision algorithms
using hand engineered features (e.g., SIFT [19], SURF [54],
HOG [55], Cascade [56]) running at the mobile device for
food image recognition, without relying on any algorithms
running in the server. These algorithms (e.g., the Cascade
algorithm) have been used in many embedded computer
vision systems. We also implement the second system,
called D-System, for comparisons. The D-system mainly
relies on using the state-of-the-art deep learning algorithms
running in the server, without using any image analysis
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TABLE 1
Comparison of Accuracy on UEC-256
at Different Iterations Using UEC-256

# of Iterations Top-1 accuracy Top-5 accuracy

4,000 46.0% 77.5%
24,000 51.0% 78.8%
56,000 51.3% 79.6%
84,000 53.3% 80.7%
92,000 54.5% 81.8%

and/or pre-processing computation at mobile device. Both
systems are evaluated against our proposed system, and the
performance metrics we use include response time, energy
consumption, and detection accuracy.

In our experiment, we use two publicly available and
challenging data sets, which are UEC-256/UEC-100 [57]
and Food-101 [58]. As shown in the sub-sections below, the
results of our proposed approach outperformed all the
existing techniques in terms of accuracy. At the same time,
the response time and energy consumption of our system
are close to the minimum of the existing approaches.

5.2 Experimental Results on UEC-256/UEC-100
Dataset

As we have introduced before, we employ two data sets for
our experiments. We will introduce our experimental
results for the first category in this section, which is UEC
dataset [57]. It was first developed by DeepFoodCam project
[59] and the majority of the food items in UEC dataset is
Asian food. This data set includes two sub-data sets: UEC-
100 and UEC-256. The first sub-data set (UEC-100) includes
100 food categories with a total of 8643 images. There are
around 90 images in each category. The second sub-data set
(UEC-256) includes 256 categories with a total of 28375
images. There are around 110 images in each category. The
researchers have added correct annotations for each image,
including food category and bounding box (used to indicate
the positions of the food). We use UEC-256 as the baseline
dataset since we prefer to have large scale training data. We
divided the images into 5 groups (5 folds). 3 groups (out of
5 groups) were used for training and the rest of the images
were used for testing.

In our experiments, the publicly available, 1000-class cat-
egory from ImageNet dataset was used as the pre-trained
model. This model (pre-trained model) was generated by
training over 1.2 million images and testing over 100,000
images. Once we have the pre-trained model, we fine-tuned
this model with the UEC-256 dataset. We fine-tuned the
model with a base-learning rate of 0.01, a momentum of 0.9
and 100,000 iterations. The results are shown below in
Table 1. If we compare the results in Table 1 with the results
in our previous publication [60], we could make two discov-
eries. First, our detection accuracy in this paper is slightly
better. Second, the number of iterations when we reach the
best performance is less than our previous paper. These two
discoveries indicate that, due to the adaption of the pro-
posed new system and algorithms, both the accuracy and
the time complexity have been slightly reduced.

We also compared our results with both the C-System
and the D-System. As we introduced before, the D-system is
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TABLE 2
Comparison of Accuracy Between our Proposed Approach
and Existing Approaches Using the Same Data Set (UEC-100)

Method Top-1 Top-5
C-System (SURF-BoF+ColorHistogram) 42.0% 68.3%
C-System (HOG Patch-FV+Color Patch-FV) 49.7% 77.6%
C-System (HOG Patch-FV+Color Patch-FV(flip)) 51.9% 79.2%
C-System (MKL) 51.6% 76.8%
C-System (Extended HOG Patch-FV+Color Patch-FV(flip)) 59.6% 82.9%
D-System (DeepFoodCam(ft)) 72.26% 92.0%
Proposed Approach in this paper 77.5% 95.2%

employing different sophisticated deep learning-based food
image recognition algorithms, including the algorithms
from the DeepFoodCam papers [57], [59]. To make a fair
comparison, we used the same dataset as original papers,
which is UEC-100, as well as the same strategy of dividing
image dataset, the result is shown in the Table 2. Please
note, there are five “C-system” in this table because we tried
different types of computer vision algorithms using hand
engineered features. Each sub-category of “C-system”
(the first five rows in Table 2) represents one type of hand
engineered feature. From this table, we can tell that our
proposed method outperformed all existing methods using
the same dataset:

Table 3 shows the corresponding energy consumption
of the three systems upon each food image. This table
shows that the energy consumption of our system is very
close to the energy consumption of the both C-system and
D-system. Please note, in Table 3, we computed the energy
consumption for both image analysis (on mobile device)
and the image transferring (from the mobile device to the
server). However, we did not compute the energy con-
sumption if the computation is performed at the server
in the cloud. Therefore, the D-system’s energy consump-
tion for image analysis is zero because D-system does not
include any computation on mobile device. On the other
hand, the energy consumption for image transferring for
C-system is zero. Because in C-system, there is no need for
data uploading since all the recognition tasks have been
done on the mobile device.

As of the computation and response time, let’s first dis-
cuss the computing time. Indeed, our algorithms is based
on deep learning and training a large deep learning model
requires a large amount of time. For example, on a NVidia
Tesla K40 GPU, it takes 2 to 3 seconds per image for for-
ward-backward pass using our proposed architecture.
Since large dataset like ImageNet and Microsoft COCO
[61] contains so many images, it may not be wise to train
the model from scratch. One practical strategy is to use the
pre-trained model in model zoo from existing implementa-
tion (e.g., Caffe [46]), which is public for all researchers. In
our own experiment, the training time is largely impacted
by the computation capacity of the server (e.g., the types of
CPU and GPU), how large the image candidate is, how
many iterations we choose, and what value we choose for
learning rate, etc. According to the rough estimation, if we
use the pre-trained GooglLeNet model, then fine-tune on
the UEC-100, UEC-256, Food-101 dataset, it roughly takes
2 to 3 days nonstop for a server equipped with Nvidia K40

TABLE 3
Energy Consumption (Joule) from Different Systems

Method Energy Consumption Energy Consumption
(Joule) Per Image for (Joule) Per Image for
Image Analysis Image Transferring
C-System 1.01 0
D-System 0 0.98
Proposed Approach in this paper 0.51 0.57

GPU to train the model. Once the model is trained, we can
directly apply the model for classifying the image. On
average, it takes 50 seconds for recognition for one image.
Therefore, the average response time (the time duration
between capturing the image and getting the food recogni-
tion results) is 1 minute per image for our proposed
approach, which include time for image pre-processing on
mobile device, the time to uploading the image to server,
and the time for recognition in the server. As a compari-
son, the response time for C-system is usually around 35
to 55 seconds (depends on what hand engineered features
we use). For example, the average computation time for a
SIFT-like feature extraction and analysis algorithm on a
mobile device (Xiaomi Note) is 50 seconds. On the other
hand, in the D-system, the response time (the time duration
between capturing the image and getting the food recogni-
tion results) is 70 seconds per image in our experiments.
This is mainly because in D-system, the image being proc-
essed is the raw image without pre-processing. Hence, we
could conclude that the response time of our proposed
approach is very close to the minimal response time of exist-
ing approach.

5.3 Experimental Results on Food-101

In addition to the first data set (UEC data set), we use the
second data set, Food-101 data set [58], in our experiment.
This dataset includes a total of 101 categories. For each food
category, there are around 1,000 images. We used around
three-quarters (75 percent) of these images for training and
the rest of the images are used for testing. Altogether, there
are over 100,000 images in this data set. One thing about
this data set is that this data set does not provide any
bounding box information (which can be used to indicate
the food location in the image). Instead, this data set offers
food type information for each image. Different from the
UEC data set, most of the images in this data set are popular
western food images.

For this data set, we used a similar implementation as the
one used in Section 4.1. The parameters were adjusted to fit
for this new data set. We used a base learning rate of 0.01, a
momentum of 0.9. Similar to the methods we used in

TABLE 4
Comparison of Accuracy on Food-101 at Different Iteration

# of Iterations Top-1 accuracy Top-5 accuracy

5,000 65.6% 88.7%
10,000 70.7% 91.2%
20,000 73.4% 92.6%
60,000 77.0% 94.0%
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TABLE 5
Comparison of Accuracy using Different Method on FOOD-101
Method top-1 top-5
C-System (RFDC-based Approach 50.76% NA
from Lukas et al. [58])
D-System (CNN-based Approach 56.40% NA
from Lukas et al. [58])
Proposed Approach in this paper 77.0% 94%

TABLE 6

Comparison of Accuracy of Proposed Approach
using Bounding Box on UEC-256

Method top-1 top-5
Proposed approach (no bounding box) 53.7% 80.7%
Proposed approach (with bounding box) 63.6% 87.0%

Section 4.1, we fine-tuned the model on Food-101 dataset.
Table 4 below shows the accuracy (both top-1 accuracy and
top-5 accuracy are listed as below). Again, if we compare
the results in Table 4 with the results in our previous publi-
cation [60], we can find that, due to the new system and
algorithms in this paper, both the accuracy and the time
complexity have been slightly reduced.

We also compared our experimental results with the
results of both the C-System and the D-System using the
same data set (Food-101 datasets). As shown in Table 5, our
proposed method is better than all existing work using the
same dataset and division.

From the above table, we can see that pre-trained model
with domain specific fine-tuning can boost the classification
accuracy significantly. And fine-tuning strategy improves
the accuracy comparing with non-fine-tuning method. The
“NA” value in the “top-5” column means “not available”,
as we used the original experiment data from their paper
[58], and they don’t provide the top-5 result in it.

As of the energy consumption and response time, we
have similar results reported as our previous data set (UEC-
256/UEC-100), as introduced in the last paragraph of Sec-
tion 5.1. Due to the space limitation, we did not report the
exact numbers here.

5.4 The Employment of Bounding Box

As shown in both Section 5.1 and Section 5.2, the detection
accuracy of our proposed approach is better than all existing
approaches. We believe that one of the reasons we could
achieve such performance boost is because in our proposed
approach, image pre-processing and image segmentation
are performed at the mobile device before analyzing these
images in the server. To verify this hypothesis, we con-
ducted a simple experiment. Our goal is to demonstrate
that even very simple pre-processing can help improve the
recognition performance. For example, we can use a simple
bounding-box strategy to reduce the image size without
analyzing the image content fully.

Specifically, we first employed the bounding box to crop
the raw image. After this processing, only the food image
part is remained for training and testing. Then, we per-
formed similar experiment on UEC-256 dataset.

We also conduct the experiment on UEC-100, as follows:

NO.2, MARCH/APRIL 2018

TABLE 7
Comparison of Accuracy of Proposed Approach
Using Bounding Box on UEC-100

Method top-1 top-5
Proposed approach (no bounding box) 54.8% 81.4%
Proposed approach (with bounding box) 76.3% 94.6%

As we can see from the two tables (Table 6 and Table 7), the
employment of bounding box could boost the classification
accuracy substantially. A simple explanation for this is that
the abundant information in the raw image is removed after
the images were cropped using bounding-box. Therefore,
a more accurate and clear image candidate for training can
be generated. Please note, these results are valid only if we
assume the majority of food image have the foreground cen-
tered on the image. Using this simple cropping-based
approach will not work well if the food is scattered on differ-
ent parts of the image. In this case, our proposed approach,
which conducts image pre-processing and image segmenta-
tion based on the image content, is certainly necessary to
improve the recognition accuracy.

6 DISCUSSIONS

Our findings indicated that our system achieves very high
detection accuracy, as shown in previous sections. However,
the response time, while very close the minimal of existing
systems, is still around 5 percent slower than the best per-
former. While this is not surprising since deep learning-based
algorithms are usually very time-consuming, we believe that
more research should be devoted to further improving the
speed. In particularly, we plan to investigate new deep
learning algorithms that can be executed in mobile devices.
There are some recent papers that have started to explore this
area with some preliminary results [62], [63], which further
motivate us to pursue this route in the future. While pushing
the deep learning-based computation further to the edge
device sounds like a good idea in the initial look, we will
have to consider the energy consumption if we execute the
deep learning algorithms at the edge device. We believe
much more research is needed in the area of distributed deep
learning-based analytics in the era of edge computing.

7 CONLUSION

In this paper, we aimed to develop a practical deep learning
based food recognition system for dietary assessment
within the edge computing service infrastructure. The key
technique innovation in this paper includes: the new deep
learning-based food image recognition algorithms and the
proposed real-time food recognition system employing
edge computing service paradigm. Our experimental
results on two challenging data sets using our proposed
approach have demonstrated that our system has achieved
the three major objectives: (1) it outperforms the results
from all existing approaches in terms of recognition accu-
racy; (2) it develops a real-time system whose response time
is close to the minimal of existing techniques; and (3) it
saves the energy by keep the energy consumption equiva-
lent to the minimum of the existing approaches. In the
future, we plan to continue improving performance of the
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algorithms (in terms of detection accuracy) and system (in
terms of response time and energy consumption). We also
plan to integrate our system into a real-world mobile devi-
ces and edge/cloud computing-based system to enhance
the accuracy of current measurements of dietary caloric
intake estimate. As our research is related to the biomedical
field, much larger data sets are needed to provide convinc-
ing evidence to verify the efficacy and effectiveness of our
proposed system. Backed by several major federal grants
from NSF and NIH, we are in the process of collaborating
with UMass Medical School and the University of Tennes-
see, College of Medicine to deploy our system in the real-
world clinical practice.
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