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Abstract. Worldwide, in 2014, more than 1.9 billion adults, 18 years and older,
were overweight. Of these, over 600 million were obese. Accurately docu-
menting dietary caloric intake is crucial to manage weight loss, but also presents
challenges because most of the current methods for dietary assessment must rely
on memory to recall foods eaten. The ultimate goal of our research is to develop
computer-aided technical solutions to enhance and improve the accuracy of
current measurements of dietary intake. Our proposed system in this paper aims
to improve the accuracy of dietary assessment by analyzing the food images
captured by mobile devices (e.g., smartphone). The key technique innovation in
this paper is the deep learning-based food image recognition algorithms. Sub-
stantial research has demonstrated that digital imaging accurately estimates
dietary intake in many environments and it has many advantages over other
methods. However, how to derive the food information (e.g., food type and
portion size) from food image effectively and efficiently remains a challenging
and open research problem. We propose a new Convolutional Neural Network
(CNN)-based food image recognition algorithm to address this problem. We
applied our proposed approach to two real-world food image data sets
(UEC-256 and Food-101) and achieved impressive results. To the best of our
knowledge, these results outperformed all other reported work using these two
data sets. Our experiments have demonstrated that the proposed approach is a
promising solution for addressing the food image recognition problem. Our
future work includes further improving the performance of the algorithms and
integrating our system into a real-world mobile and cloud computing-based
system to enhance the accuracy of current measurements of dietary intake.
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1 Introduction

Accurate estimation of dietary caloric intake is important for assessing the effectiveness
of weight loss interventions. Current methods for dietary assessment rely on self-report
and manually recorded instruments (e.g., 24 h dietary recall [1] and food frequency
questionnaires [2]). Though the 24 h dietary recall is the gold standard for reporting,
this method still experiences bias as the participant is required to estimate their dietary
intake (short and long term). Assessment of dietary intake by the participant can result
in underreporting and underestimating of food intake [3, 4]. In order to reduce par-
ticipant bias and increase the accuracy of self-report, enhancements are needed to
supplement the current dietary recalls. One of the potential solutions is a mobile cloud
computing system, which is to employ mobile computing devices (e.g., smartphone) to
capture the dietary information in natural living environments and to employ the
computing capacity in the cloud to analyze the dietary information automatically for
objective dietary assessment [5–15]. Among the large selection of mobile cloud
computing software for health, many have proposed to improve dietary estimates
[13–15]. While these apps have features to track food intake, exercise, and save data in
the cloud, the user has to manually enter all their information. To overcome these
barriers, some research and development efforts have been made over the last few years
for visual-based dietary information analysis [5–12]. While progresses have been
made, how to derive the food information (e.g., food type) from food image effectively
and efficiently remains a challenging and open research problem.

In this paper, we propose new deep learning-based [16] food image recognition
algorithm to address this challenge. The proposed approach is based on Convolutional
Neural Network (CNN) with a few major optimizations. The experimental results of
applying the proposed approach to two real-world datasets have demonstrated the
effectiveness of our solution.

The rest of the paper is organized as follows. Section 2 introduces related work in
computer-aided dietary assessment and visual-based food recognition. Section 3 pre-
sents the proposed deep learning-based approach for food image recognition. Section 4
describes the implementation details and the evaluation results of our proposed algo-
rithms. We make concluding remarks in Sect. 5.

2 Related Work

The first related research area is technology solutions for enhancing the accuracy of
dietary measurement. As we have introduced before, the ubiquitous nature of mobile
cloud computing invites an unprecedented opportunity to discover early predictors and
novel biomarkers to support and enable smart care decision making in connection with
health scenarios, including that of dietary assessment. There are thousands of mobile
cloud health software (e.g., mobile health Apps available for iPhone, iPad, and Android)
and many mobile health hardware options (e.g., activity tracker, wireless heart rate
monitors). Among this huge selection, many have proposed to improve dietary estimates
[13–15]. While these Apps have features to track food intake, exercise, and save data in
the cloud, the user still has to manually enter everything they ate. Several apps have an
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improved level of automation. For example, Meal Snap [17] estimates the calorie
content by asking the user to take a picture, dial in data such as whether you are eating
breakfast or lunch, and add a quick text label. However, the accuracy of calorie esti-
mation is unstable and is heavily dependent upon the accuracy of manually entered text
input from users. Another App named “Eatly” [18] simply rates the food into one of the
three categories (“very healthy”, “it’s O.K.”, and “unhealthy”) using the food image
taken by the user. However, the rating is actually manually performed by the app’s
community of users, instead of by automated computer algorithms.

The second related research area is visual-based dietary information analysis [5–
12]. Yang et al. [6] proposed a method to recognize fast food using the relative spatial
relationships of local features of the ingredients followed by a feature fusion method.
This method only works for a small number of food categories (61 foods) and is
difficult to extend to composite or homemade food. Matsuda et al. [7] proposed an
approach for multiple food recognition using a manifold ranking-based approach and
co-occurrence statistics between food items, which were combined to address the
multiple food recognition issue. However, this type of solution is computationally
intensive and may not be practical for deployment within the mobile cloud-computing
platform. A sequence of papers [8–10] from Purdue University TADA project [11]
covered food item identification, food volume estimation, as well as other aspects of
dietary assessment, such as mobile interface design and food image database devel-
opment. The majority of their techniques for food recognition are based on traditional
signal processing techniques with hand-engineered features. Recently, due to the
occurrence of large annotated dataset like ImageNet [19], Microsoft COCO [20], and
the development of powerful machine equipped with GPU, it is plausible to train large
and complex CNN models for accurate recognition, which surpassed most of the
methods adopted using hand-crafted features [21]. In this paper, we employ
machine-learned features with deep learning based method, rather than the hand
engineered features, to achieve a much higher accuracy.

3 Proposed Approach

In this paper, we propose a new deep learning-based approach to address the food
image recognition problem. Specifically, we propose Convolutional Neural Network
(CNN)-based algorithms with a few major optimizations, such as an optimized model
and an optimized convolution technique. In the following sub-sections, we will first
introduce the background and motivations of the proposed approach, follows with the
detailed introduction of the proposed approach.

3.1 Deep Learning, Convolutional Neural Network (CNN), and Their
Applications to Visual-Based Food Image Recognition

Deep learning [16, 22], aims to learn multiple levels of representation and abstraction
that help infer knowledge from data such as images, videos, audio, and text, is making
astonishing gains in computer vision, speech recognition, multimedia analysis, and drug
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designing [23]. Briefly speaking, there are two main classes of deep learning techniques:
purely supervised learning algorithms (e.g., Deep Convolutional Network [21]), unsu-
pervised and semi-supervised learning algorithms (e.g., Denoising Autoencoders [24],
Restricted Boltzmann Machines, and Deep Boltzmann Machines [25]). Our proposed
approach belongs to the first category (supervised learning algorithms). With the help of
large-scale and well-annotated dataset like ImageNet [19], it’s now feasible to perform
large scale supervised learning using Convolutional Neural Network(CNN). The issue
of convergence has been addressed by Hinton’s work in 2006 [22]. Subsequent theo-
retical proof and experimental results both shows that large scale pre-trained models in
large domain, with specific small scale unlabeled data in another domain, will give
excellent result in image recognition and object detection [26]. To address the issue of
limited abilities of feature representation, many researchers have proposed more com-
plex CNN network structure, like VGG [27], ZFNet [28], GoogLeNet [29] and so on.
On the other hand, ReLU [30] is also proposed to make it converge faster and also gains
a better accuracy. Most of current researchers have put efforts in making the network
deeper and avoid saturation problem [21, 27].

Inspired by the advances of deep learning technique, some researchers have applied
deep learning for visual-based food image recognition. In a paper by Kawano et al.
[31], the researchers developed an Android application to collect and label food image.
They also created a food image database named “UEC-256 food image data set”. With
this data set, they first conducted some experiments using SIFT features and SVM, and
shows much better result comparing with PFID [32]. Then, they used AlexNet [21] to
the same data sets and showed much better result than SIFT-SVM-based method [33].

3.2 Proposed CNN-Based Approach for Visual-Based Food Image
Recognition

Our proposed approach was directly inspired by and rooted from LeNet-5 [34],
AlexNet [21], and GoogleNet [29]. The original idea of CNN was inspired by the
neuroscience model of primate visual cortex [35]. The key insights from paper [35] is
how to make the machine learning with multiple level neurons like human mind. In
human brain, it’s known that different neurons control different perception function-
ality, how to make the computer recognize and think in human-like way has long been
a topic for many artificial intelligence experts. In [34] the article by LeCun et al., they
proposed the initial structure of LeNet-5, which is considered to the first successful trial
in deep learning. In their paper, a 7-layer network structure is proposed to represent
human-written digital characters and used for digits recognition. The input of the
network is 32 × 32 grey-scale image, after several layers of convolution and
sub-sampling, a feature map is generated and feed into the two fully-connected layers.
After the fully-connected layer’s computation, a 10-class output is generated, repre-
senting the digital 0 to 9.

This network shows the basic components of convolutional neural networks
(CNN). It’s consisted of three convolutional layers marked as C1, C3 and C5,
sub-sampling layers marked as S2, S4 and fully connected layers as F6 and output
layer. For convolutional layer, a receptive field (we call it fixed-size patch or kernel) is
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chosen to compute convolution with the same size patch in the input. A stride is set to
make sure every pixel in the original image or feature map is covered and generates the
corresponding output in the output feature map. After the operation of convolution, a
sub-sampling is done within the feature map to reduce the dimension and avoid repeat
computation. Finally, fully connected layers are used to concatenate the
multi-dimension feature maps and to map the feature into fix-size category as a clas-
sifier. All these layers have trainable parameters (weights) adjusted when it’s training
using character sample images. According to some of the latest research, researchers
are putting more efforts in strengthening the capabilities of the representing image
features using more complex model. In the article [21], a 7-layer model called AlexNet,
consisting 5 convolutional layers and 2 fully-connected layers is used with large scale
labeled image dataset ImageNet. Since then, more and more work is done to increase
the number of layers and layer size, while using Dropout, ReLU to address the problem
of overfitting and saturating. In the following years, ZFNet, VGG, GoogLeNet are
developed using more complex neurons, computation units and layer structures.

Similar to GoogleNet, we employed an Inception module to increase the repre-
sentation power of neural network. This work is motivated by the Network-in-Network
approach proposed by Lin et al. [36]. In this module, additional 1×1 convolutional
layers are added to the network, increasing the depth of overall network structure. On
the other hand, this additional module can reduce the dimension of feature map, thus
removing the computation bottlenecks. Normally, an Inception module takes the fea-
ture map as the input, followed with several convolutional layers varying from 1×1
convolutions, to 3×3 and 5×5 convolutions, and max-pooling layers like 3×3 pooling.
Each layer generates different output and then these filters are concatenated into one
feature map as the output. The outputs of the Inception module are used for next layer’s
convolution or pooling.

Based on the aforementioned inception modules, an optimized convolution is used
to conduct dimension reduction and depth increasing. The input is not fed directly into
the 3×3 and 5×5 convolutional layer. Instead, an additional 1×1 convolutional layer is
added to reduce the input dimension. Furthermore, after the 3×3 max-pooling layer, the

output is fed into an additional 1×1 con-
volutional layer. This way the Inception
module is adjusted with more depth and
less dimension. Similar to GooglNet,
experiment shows that this network
enhances the capturing of more visual
information under constrained computa-
tional complexity. The improved incep-
tion module is illustrated in Fig. 1. The
dotted rectangle shows the added 1×1
convolution layer. In this Figure, we used
dotted convolutional layer called con-
vLayer to represent the layers that we
added in the Inception module. Unlike the
previous network structure that doesn’t
contain the dotted layer, which is onlyFig. 1. Inception Module
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three layers: previous layer, conv/max-pool layer and concateLayer, after adding these
convLayers, we have four layers: previous layer, conv/max-pool layer, conv layer and
concateLayer. In this way, a feature map contains much more information than before.

After the Inception module is formed, we use multiple modules to form the
GoogLeNet, as shown in Fig. 2, the two modules are connected via an additional max
pooling layer, each module takes the input of another module, after concatenation and

pooling, the output is feed into another
Inception module as the input. In this way,
the network forms a hierarchical level step
by step. In [37], Kaiming et al. gives the
general guidance for modifying models
considering the influence of different depth,
number of filters and filter size. In our
experiment, we inherit the 22-layer network
structure in GoogLeNet, run the experiment
multiple times using different kernel size and
stride. In our experiment, an input size of
224 × 224 taking RGB channels, with
“1×1”, “3×3” and “5×5” convolutions,
yield the best result. Other parameters are
the same as the proposed GoogLeNet,
Sect. 4 gives the detailed parameters when
training on different data.

The network has 22 layers in depth, if
only counting the layers with parameters.
The average pooling layer is 5×5 filter size,
and 1×1 convolutional layer is equipped

with 128 filters and rectified linear activation (ReLU). In addition, the fully-connected
layers are bound to 1024-dimension for feature mapping, and it’s mapped into 1000-
class output using ImageNet data set. A 70 % dropout rate is used to reduce over
fitting, and the final classifier uses Softmax loss. Given different datasets, the output
class number may vary according to the actual categories.

Due to the efficacy and popularity among open source community, we implement
the proposed approach using Caffe [38]. In our experiment, we choose Ubuntu 14.04 as
our host system. Four NVidia Tesla K40 GPUs were used to boost the training process.
According to the model zoo, we used the pre-trained GoogLeNet model on ImageNet
dataset with 1000 class, then fine-tuned on our own dataset UEC-256 and Food-101
with 256 classes or 101 classes. The model definition is adjusted in prototxt file in
Caffe.

4 Experimental Results

In our experiments, we used two publicly available and challenging data sets, which
were UEC-100/UEC-256 [31] and Food-101 [39]. As shown in the sub-sections below,
the results of our proposed approach outperformed the all the existing techniques.

Fig. 2. Module connection
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4.1 Experimental Results on UEC-256

The first datasets we used is called UEC dataset [31], which includes two sub-data sets:
UEC-100 and UEC-256 [31]. This dataset was developed by DeepFoodCam project
[33]. This dataset includes a large volume of food categories with textual annotation.
We note that most of the foods in the dataset are Asian foods (i.e., Japanese foods). For
UEC-100, there are 100 categories with a total of 8643 images, each category has
roughly 90 images. For UEC-256, there are 256 categories with a total of 28375
images; each category has roughly 110 images. All of these images are correctly label
with food category and bounding-box coordinates indicating the positions of the label
food partition. In our experiment, because of the requirement of large-scale training
data, we chose UEC-256 as the baseline dataset. All these images are divided into 5
folds, and 3 folds were used for training while the remaining 2 folds were used for
testing.

In our experiment, we first used the pre-trained model with 1000-class category
from ImageNet dataset. This model is publicly available in model zoo from Caffe’s
community. The pre-trained model was trained using 1.2 million images for training
and 100,000 images for testing. Based on the pre-trained model, we further fine-tune
the model using the UEC-256 dataset whose output category number is 256. The model
was fine-tuned (ft) with a base-learning rate at 0.01, a momentum of 0.9 and 100,000
iterations. The results are shown below in Table 1.

We also compared our result with the original results from the DeepFoodCam
papers [31, 33]. To make a fair comparison, we used the same dataset as original
papers, which is UEC-100, as well as the same strategy of dividing image dataset, the
result is shown in the Table 2. From this table, we can tell that our proposed method
outperformed all existing methods using the same dataset:

4.2 Experimental Results on Food-101

The second data set we used is Food-101 by Lukas et al. [39]. This dataset consists of
101 categories and each category has around 1000 images. Among the 1,000 images,

Table 1. Comparison of accuracy on UEC-256 at different iterations using UEC-256)

# of Iterations Top-1 accuracy Top-5 accuracy

4,000 45.0 % 76.9 %
16,000 50.4 % 78.7 %
32,000 51.2 % 79.3 %
48,000 53.1 % 80.3 %
64,000 52.5 % 80.3 %
72,000 54.7 % 81.5 %
80,000 53.6 % 80.1 %
92,000 54.0 % 81.0 %

100,000 53.7 % 80.7 %
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around 75 % of them were used for training and the rest 25 % were used for testing.
There are 101,000 images in total in this dataset. However, since all these data were
collected by food sharing websites, images do not contain any bounding box infor-
mation indicating the food location. Each image only contains the label information
indicating the food type. Most of the images are popular western food images.

The implementation of our algorithm for this dataset is similar to the one used in
Sect. 4.1. We did adjust the parameters to fit for 101 food categories, and then used a
base learning rate of 0.01, a momentum of 0.9 and (up to) 300,000 iterations. Based on
the 1000-class pre-trained model on ImageNet dataset, we fine-tuned the model on
Food-101 dataset, the accuracy is shown as the following table, and we have achieved a
77.4 % top-1 accuracy and 93.7 % top-5 accuracy (Table 3).

We also compared our experiment with the state of the art techniques using the
Food-101 datasets for evaluation. As shown in Table 4, our proposed method is better
than all existing work using the same dataset and division.

From the above table, we can see that pre-trained model with domain specific
fine-tuning can boost the classification accuracy significantly. And fine-tuning strategy
improves the accuracy comparing with non-fine-tuning method. In this table, we use
“ft” to represent the method using fine-tuning, otherwise “no ft” means that we don’t

Table 2. Comparison of accuracy between our proposed approach and existing approaches
using the same data set (UEC-100)

Method top-1 top-5

SURF-BoF + ColorHistogram 42.0 % 68.3 %
HOG Patch-FV + Color Patch-FV 49.7 % 77.6 %
HOG Patch-FV + Color Patch-FV(flip) 51.9 % 79.2 %
MKL 51.6 % 76.8 %
Extended HOG Patch-FV + Color Patch-FV(flip) 59.6 % 82.9 %
DeepFoodCam(ft) [33] 72.26 % 92.00 %
Proposed Approach in this Paper 76.3 % 94.6 %

Table 3. Comparison of accuracy on Food-101 at different iterations

# of Iterations Top-1 accuracy Top-5 accuracy

10,000 70.2 % 91.0 %
30,000 74.7 % 93.0 %
50,000 75.1 % 93.0 %
70,000 74.0 % 92.1 %
90,000 76.3 % 93.4 %
160,000 76.6 % 93.4 %
180,000 77.2 % 93.3 %
200,000 76.9 % 93.4 %
250,000 77.4 % 93.7 %
300,000 76.4 % 93.0 %
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use fine-tuning and directly train the CNN model using designed architecture. The
“NA” value in the “top-5” column means “not available”, as we used the original
experiment data from their paper [39], and they don’t provide the top-5 result in it.

4.3 The Employment of Bounding Box

In the above experiment, we have shown that our proposed approach outperformed all
existing approach. One further improvement is to add a pre-processing step with
bounding box before fine-tuning. Specifically, based on the original image dataset, we
first used the bounding box to crop the raw image. After this processing, only the food
image part is remained for training and testing. We then conducted similar experiment
on UEC dataset as shown Sects. 4.1 and 4.2 (Table 5).

We also conducted the experiment on UEC-100, as follows:

Food-101 was not used as it does not contain bounding box information and we
cannot preprocess the image. Our experiment in these two subsets on UEC dataset
shows that using bounding box information will significantly boost the classification
accuracy. One intuitive explanation for this result is that the cropped image using
bounding-box eliminates the abundant information in the raw image and forms a more
accurate and clear image candidate for training, which yields a more accurate model for
classification during the testing (Table 6).

Table 4. Comparison of accuracy using different method on Food-101

Method top-1 top-5

CNN-based Approach from Lukas et al. [39] 56.40 % NA
RFDC-based Approach from Lukas et al. [39] 50.76 % NA
Proposed Approach in this Paper 77.4 % 93.7 %

Table 5. Comparison of accuracy of proposed approach using bounding box on UEC-256

Method Top-1 Accuracy Top-5 Accuracy

Proposed Approach without Bounding Box 54.7 % 81.5 %
Proposed Approach with Bounding Box 63.8 % 87.2 %

Table 6. Comparison of accuracy of proposed approach using bounding box on UEC-100

Method Top-1 Accuracy Top-5 Accuracy

Proposed Approach without Bounding Box 57.0 % 83.4 %
Proposed Approach with Bounding Box 77.2 % 94.8 %
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4.4 Running Time

Training a large model requires a large amount of time. On a K40 machine, it takes 2 to
3 s per image for forward-backward pass using GoogLeNet. Since large dataset like
ImageNet, Microsoft COCO contains so many images, it’s a bit waste of time to train
the model from scratch. One practical strategy is to use the pre-trained model in model
zoo, which is public for all researchers. In our real experiment, the training time is
influenced by how powerful the machine or GPU is, how large the image candidate is,
how many iterations we choose, and what value we choose for learning rate etc.
According to the rough estimation, if we use the pre-trained GoogLeNet model, then
fine-tune on the UEC-100, UEC-256, Food-101 dataset, it roughly takes 2 to 3 days
nonstop for a server equipped with Nvidia K40 GPU to train the model. After we have
trained the model, we directly apply the model for classifying the image. It takes less
than 1 min to test one image.

5 Conclusion

Obesity is a disorder involving excessive body fat that increases the risk of type 2
diabetes and cardiovascular diseases. In 2014, about 13 % of the world’s adult pop-
ulation (11 % of men and 15 % of women) were obese. Accurate estimation of dietary
intake is important for assessing the effectiveness of weight loss interventions. In order
to reduce bias and improve the accuracy of self-report, we proposed new algorithms to
analyze the food images captured by mobile devices (e.g., smartphone). The key
technique innovation in this paper is the deep learning-based food image recognition
algorithms. Our proposed algorithms are based on Convolutional Neural Network
(CNN). Our experimental results on two challenging data sets using our proposed
approach exceed the results from all existing approaches. In the future, we plan to
improve performance of the algorithms and integrate our system into a real-word
mobile devices and cloud computing-based system to enhance the accuracy of current
measurements of dietary caloric intake.

Acknowledgments. This project is supported in partial by National Science Foundation of the
United States (Award No. 1547428, 1541434, 1440737, and 1229213). Points of view or
opinions in this document are those of the authors and do not represent the official position or
policies of the U.S. NSF.

References

1. Beaton, G.H., Milner, J., Corey, P., McGuire, V., Cousins, M., Stewart, E., et al.: Sources of
variance in 24-hour dietary recall data: implications for nutrition study design and
interpretation. Am. J. Clin. Nutr. (USA) 32, 2546–2559 (1979)

2. Willett, W.C., Sampson, L., Stampfer, M.J., Rosner, B., Bain, C., Witschi, J., et al.:
Reproducibility and validity of a semiquantitative food frequency questionnaire. Am.
J. Epidemiol. 122, 51–65 (1985)

46 C. Liu et al.



3. Buzzard, M.: 24-hour dietary recall and food record methods. Monogr. Epidemiol.
Biostatistics 1, 50–73 (1998)

4. Poslusna, K., Ruprich, J., de Vries, J.H., Jakubikova, M., van’t Veer, P.: Misreporting of
energy and micronutrient intake estimated by food records and 24 hour recalls, control and
adjustment methods in practice. Br. J. Nutr. 101, S73–S85 (2009)

5. Steele, R.: An overview of the state of the art of automated capture of dietary intake
information. Crit. Rev. Food Sci. Nutr. 55, 1929–1938 (2013)

6. Yang, S., Chen, M., Pomerleau, D., Sukthankar, R.: Food recognition using statistics of
pairwise local features. In: 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2249–2256 (2010)

7. Matsuda, Y., Yanai, K.: Multiple-food recognition considering co-occurrence employing
manifold ranking. In: 2012 21st International Conference on Pattern Recognition (ICPR),
pp. 2017–2020 (2012)

8. Zhu, F., Bosch, M., Woo, I., Kim, S., Boushey, C.J., Ebert, D.S., et al.: The use of mobile
devices in aiding dietary assessment and evaluation. IEEE J. Sel. Top. Sig. Process. 4, 756–
766 (2010)

9. Daugherty, B.L., Schap, T.E., Ettienne-Gittens, R., Zhu, F.M., Bosch, M., Delp, E.J., et al.:
Novel technologies for assessing dietary intake: evaluating the usability of a mobile
telephone food record among adults and adolescents. J. Med. Internet Res. 14, e58 (2012)

10. Xu, C., He, Y., Khannan, N., Parra, A., Boushey, C., Delp, E.: Image-based food volume
estimation. In: Proceedings of the 5th International Workshop on Multimedia for Cooking &
Eating Activities, pp. 75–80 (2013)

11. TADA: Technology Assisted Dietary Assessment at Purdue University, West Lafayette,
Indiana, USA. http://www.tadaproject.org/

12. Martin, C.K., Nicklas, T., Gunturk, B., Correa, J.B., Allen, H.R., Champagne, C.: Measuring
food intake with digital photography. J. Hum. Nutr. Diet. 27(Suppl 1), 72–81 (2014)

13. MyFitnessPal.com: Free Calorie Counter, Diet & Exercise Tracker. http://www.
myfitnesspal.com/

14. MyNetDiary: the easiest and smartest free calorie counter and free food diary for iPhone,
iPad, Android, and BlackBerry applications. http://www.mynetdiary.com/

15. FatSecret: All Things Food and Diet. http://www.fatsecret.com/
16. Bengio, Y.: Learning deep architectures for AI. Found. Trends®. Mach. Learn. 2, 1–127

(2009)
17. Meal Snap: Magical Meal Logging for iPhone. http://mealsnap.com/
18. Eatly: Eat Smart (Snap a photo of your meal and get health ratings). https://itunes.apple.com/

us/app/eatly-eat-smart-snap-photo/id661113749
19. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale

hierarchical image database. In: Proceedings of IEEE Computer Vision and Pattern
Recognition (CVPR), Miami, Florida, USA (2009)

20. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.
L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B.,
Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer,
Heidelberg (2014)

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: NIPS, p. 4 (2012)

22. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets.
Neural Comput. 18, 1527–1554 (2006)

23. Scientists See Promise in Deep-Learning Programs, by John Markoff, New York Times
(2012). http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-
learning-a-part-of-artificial-intelligence.html

DeepFood: Deep Learning-Based Food Image Recognition 47



24. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as
generative models. In: Advances in Neural Information Processing Systems, pp. 899–907
(2013)

25. Salakhutdinov, R., Hinton, G.E.: Deep boltzmann machines. In: International Conference on
Artificial Intelligence and Statistics, pp. 448–455 (2009)

26. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 580–587 (2014)

27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition, arXiv preprint arXiv:1409.1556 (2014)

28. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet,
D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689,
pp. 818–833. Springer, Heidelberg (2014)

29. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.: Going deeper with
convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–9 (2015)

30. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In:
Proceedings of the 27th International Conference on Machine Learning (ICML 2010),
pp. 807–814 (2010)

31. Kawano, Y., Yanai, K.: Foodcam: a real-time food recognition system on a smartphone.
Multimedia Tools Appl. 74, 5263–5287 (2015)

32. Chen, M., Dhingra, K., Wu, W., Yang, L., Sukthankar, R.: PFID: pittsburgh fast-food image
dataset. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 289–
292 (2009)

33. Kawano,Y., Yanai, K.: Food image recognition with deep convolutional features. In:
Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pp. 589–593. Adjunct Publication (2014)

34. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278–2324 (1998)

35. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture
in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

36. Lin, M., Chen, Q., Yan, S.: Network in network, arXiv preprint arXiv:1312.4400 (2013)
37. He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5353–5360 (2015)
38. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al.: Caffe:

convolutional architecture for fast feature embedding. In: Proceedings of the ACM
International Conference on Multimedia, pp. 675–678 (2014)

39. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – Mining discriminative components
with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014,
Part VI. LNCS, vol. 8694, pp. 446–461. Springer, Heidelberg (2014)

48 C. Liu et al.


