#### Improving Tuberculosis(TB) Diagnostics using Deep Learning and Mobile Health Technologies among Resource-poor and Marginalized Communities

Yu Cao<sup>1</sup>, Chang Liu<sup>1</sup>, Benyuan Liu<sup>1</sup>, Maria J. Brunette<sup>1</sup>, Ning Zhang<sup>1</sup>, Tong Sun<sup>1</sup>, Peifeng Zhang<sup>1</sup>, Jesus Peinado<sup>2</sup>, Epifanio Sanchez Garavito<sup>3</sup>, Leonid Lecca Garcia<sup>3</sup>, Walter H. Curioso<sup>4</sup>

> <sup>1</sup>University of Massachusetts, Lowell <sup>2</sup>Partners in *Perú* <sup>3</sup>National Hospital Sergio E.Bernales *Perú*, <sup>4</sup>University of Washington, Seattle



Learning with Purpose

# Tuberculosis(TB)

- A chronic and infectious disease
- Affects the most disadvantaged populations and involves complex treatment regimes
- More than 9 million estimated new case and
   1.5 million deaths every year
- Over 80% were in South-East Asia, Western Pacific and African(2013)
- Majority of the infected populations was from resource-poor and marginalized communities.



### **Tuberculosis Diagnostics**





# **Related Work**

- MHealth in developing country for TB diagnosis
  - "Mobile health for public health in Peru: lessons learned", 2015, E. F. Ruiz et al.
  - "Emerging technologies for monitoring drug-resistant tuberculosis at the point-of-care", 2014, V. Mani et al.
- Develop Chest X-ray image database
  - Most of TB screen dataset have less than 200 images
  - ImageCLEF, JSRT Digital Image Database, ANODE Grand Challenge Database etc.., but only contains one or two TB manifestation
- Computer-aided system to screen the chest radiography image for TB diagnosis
  - Computer-aided screening and scoring algorithms using chest radiographic features for TB diagnosis
  - X-ray image categorization on organ and pathology leve



#### mHealth

# Challenge

Lack of large scale, wellannotated, real-world X-ray Image Dataset

Lack of mobile device-based computing system

# Solution!

\* International research team

- \* Clinical and research collaborators
- \* Develop Annotation software

 Develop a Mobile-cloud system
 Deep learning model

Training in cloud server



Learning with Purpose

### **System Overview**



#### Mobile Application

Image Capturing and Data Transmission

#### Cloud Server

- X-ray Image Annotation
- Deep Learning(CNN)-based Data Analytics



### **TB Manifestation**



- (a) Air space consolidation which showing glass opacity with consolidation in the right middle lobe;
- (b) Miliary pattern with seed-like appearance;
- (c) Cavity located at the lower lobe (annotated by arrows);
- (d) Pleural effusion, which is excess fluid that accumulates in the pleural cavity;
- (e) Calcified granulomata: The red arrow indicates a large 5 cm diameter squamous cell carcinoma of the right lower lobe and there is 1.5 cm bright opacity in the middle of the mass (which is a calcified granuloma). Additional calcified granulomatous areas are medial to the mass, as indicated by blue arrow.



#### **Annotation Software**



\* Modified from open source software

- Left Panel: Lists of Images
- Middle Panel: Annotation tools
- Right Panel: existing annotation details



### **Proposed Computational Model**



- Extraction of region proposal
- Compute CNN features
- Region Classification
- TB manifestation recognition



# **Proposed Approach: Deep Learning**

- A branch of *machine learning*
- Attempts to model <u>high-level abstractions</u> in data by using <u>model architectures</u>
- Multiple layers of <u>nonlinear</u> processing units
- The unsupervised or supervised learns feature representations in each layer, with the layers forming a hierarchy from <u>low-level</u> to <u>high-level</u> features
- Among various techniques, Convolutional Neural Network(CNN) has achieved most promising result in *classification* and *object detection* for images.



# Proposed Approach: Deep Learning (CNN) Model Structure



- Input
- Convolutional Layer
- Sub-sampling/Pooling Layer
- Fully-connected Layer
- Output



## **Proposed Approach: Model Optimization**

- Proposed approach for model optimization
  - Hinted by two recent advances
    - Network in Network
    - GoogLeNet
  - 22 Layers
  - Inception Model
  - Repeated inceptions
  - Smaller convolution size



\* Liu, Cao. et al. DeepFood

## Proposed Approach: Training Strategy

- Dataset
  - ImageNet (millions of images)
  - X-ray TB image datasets(~4700 images)
- Caffe + Cuda 6.5
  - Model Zoo(publicly released)
  - GPU accelerating, Nvidia K80
- Pretrain + finetune
  - GoogLeNet Model on ImageNet
  - Finetune on our TB datasets



# **Experimental Result(1)**

- Dataset: 4701 images from Peru
- Two categories: Abnormal(4248 images) vs Normal (453 images)
- Convolutional Neural Network(CNN)
  - GoogLeNet Model
  - Pre-trained on ImageNet, fine-tuned on our X-ray dataset
  - Binary classification: 4/5 of the images for training, 1/5 of the images for testing

| # of iteration    | 10,000 | 30,000 | 50,000 | 80,000 | 100,000 |
|-------------------|--------|--------|--------|--------|---------|
| Average precision | 82.8%  | 88.6%  | 89.0%  | 89.5%  | 89.6%   |

Table1: Average Precision for binary classification



# **Experimental Result(2)**

Dataset: 4701 images from Peru
Four categories, Same training strategy

| Category(TB<br>Manifestation) | Total<br>Image # | Image # Used<br>for Training | Image # Used<br>for Testing |  |
|-------------------------------|------------------|------------------------------|-----------------------------|--|
| Cavitation                    | 1182             | 946                          | 246                         |  |
| Lymphadenopathy               | 202              | 162                          | 40                          |  |
| Infiltration                  | 2252             | 1802                         | 450                         |  |
| Pleural Effusion              | 560              | 448                          | 112                         |  |

Table2: Data distribution for different TB manifestation

| # of iteration    | 10,000 | 30,000 | 50,000 | 80,000 | 100,000 |
|-------------------|--------|--------|--------|--------|---------|
| Average precision | 43.48% | 61.68% | 61.92% | 62.05% | 62.07%  |

Table3: Average Precision for multi-class classification



# Conclusion

- Mobile technologies have the potential to reduce the burden of TB for better diagnosis.
- Deep learning technology, especially CNN, can further improve the classification accuracy of X-ray images.
- Our integrated system can reduce the diagnosis time, within resource-poor and marginalized communities.



## **Future Work**

- Continue to develop the large scale, realworld X-ray TB database.
- Improve the classification accuracy for the deep learning computational models.
- Implement a scalable solution by making the mobile device based system available as an open source platform
- Conduct field-testing in tuberculosis clinics in Peru.



# Acknowledgement

This project is supported in partial by

 NSF/NIH Smart and Connected Health Program: SCH:INT:A Sociotechnical Systems approach for Improving Tuberculosis Diagnostics Using Mobile Health Technologies, \$1.29M, 2015-2019, PIs: Prof. Yu Cao, Benyuan Liu, and Maria Brunette





Thank you!



Learning with Purpose