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A chronic and infectious disease
Affects the most disadvantaged populations 
and involves complex treatment regimes
More than 9 million estimated new case and 
1.5 million deaths every year
Over 80% were in South-East Asia, Western 
Pacific and African(2013)
Majority of the infected populations was from 
resource-poor and marginalized
communities.

Tuberculosis(TB)



Learning with Purpose

Tuberculosis Diagnostics

Resource-‐poor	  
Community

• Weak	  Healthcare	  
Infrastructure

TB	  diagnosis	  Delay

• High	  infected	  
Rate

mHealth	  System	  
with	  Deep	  Learning

• Mobile-‐
technique	  based	  
data	  capturing	  
and	  transmission

• Deep-‐learning-‐
based	  analysis	  
and	  detection

• User-‐centered
• Expedited	  TB	  
diagnosis

Solution
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mHealth in developing country for TB diagnosis
• “Mobile health for public health in Peru: lessons learned”,

2015, E. F. Ruiz et al.
• “Emerging technologies for monitoring drug-resistant 

tuberculosis at the point-of-care”, 2014,V. Mani et al.

Develop Chest X-ray image database
• Most of TB screen dataset have less than 200 images
• ImageCLEF, JSRT Digital Image Database, ANODE Grand

Challenge Database etc.. , but only contains one or two
TB manifestation

Computer-aided system to screen the chest
radiography image for TB diagnosis
• Computer-aided screening and scoring algorithms using

chest radiographic features for TB diagnosis
• X-ray image categorization on organ and pathology level

Related Work
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mHealth

Challenge

Lack	  of	  large	  scale,	  well-‐
annotated, real-‐world	  X-‐ray	  

Image	  Dataset

Lack	  of	  mobile device-‐based	  
computing	  system

Solution!

* International	  research	  team
*	  Clinical	  and	  research	  

collaborators
*	  Develop	  Annotation	  

software

*	  Develop	  a	  Mobile-‐cloud	  
system

*	  Deep	  learning	  model	  
Training in	  cloud server
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Mobile Application
• Image Capturing and Data Transmission

Cloud Server
• X-ray Image Annotation
• Deep Learning(CNN)-based Data Analytics

System Overview
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(a) Air space consolidation which showing glass opacity with consolidation in the right middle lobe; 
(b) Miliary pattern with seed-like appearance; 
(c) Cavity located at the lower lobe (annotated by arrows); 
(d) Pleural effusion, which is excess fluid that accumulates in the pleural cavity; 
(e) Calcified granulomata: The red arrow indicates a large 5 cm diameter squamous cell carcinoma 
of the right lower lobe and there is 1.5 cm bright opacity in the middle of the mass (which is a 
calcified granuloma). Additional calcified granulomatous areas are medial to the mass, as indicated 
by blue arrow. 

TB Manifestation
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Left Panel: Lists of Images
Middle Panel: Annotation tools
Right Panel: existing annotation details

Annotation Software

*	  Modified	  from	  open	  source	  software
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Extraction of region proposal
Compute CNN features
Region Classification
TB manifestation recognition

Proposed Computational Model
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A branch of machine learning
Attempts to model high-level abstractions in 
data by using model architectures
Multiple layers of nonlinear processing units
The unsupervised or supervised learns feature 
representations in each layer, with the layers 
forming a hierarchy from low-level to high-level
features
Among various techniques, Convolutional 
Neural Network(CNN) has achieved most 
promising result in classification and object 
detection for images.

Proposed Approach: Deep Learning
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Proposed Approach: Deep Learning 
(CNN) Model Structure

Input
Convolutional Layer
Sub-sampling/Pooling Layer
Fully-connected Layer
Output
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Proposed approach for 
model optimization
• Hinted by two recent 

advances
• Network in Network
• GoogLeNet

• 22 Layers
• Inception Model
• Repeated inceptions
• Smaller convolution size

Proposed Approach: Model 
Optimization

Concated Feature 
Map
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1x1+1(S)

ConvLayer
1x1+1(S)

MaxPoolLayer
3x3+1(S)

ConvLayer
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Concat Feature

Concated Feature 
Map

ConvLayer
1x1+1(S)

ConvLayer
1x1+1(S)

MaxPoolLayer
3x3+1(S)

ConvLayer
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ConvLayer
3x3+1(S)

ConvLayer
5x5+1(S)

ConvLayer
1x1+1(S)

Concat Feature

MaxPoolLayer
3x3+1(S)

Inception 
Module

Inception 
Module

*	  Liu, Cao. et al. DeepFood
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Dataset
• ImageNet (millions of images)
• X-ray TB image datasets(~4700 images)

Caffe + Cuda 6.5
• Model Zoo(publicly released)
• GPU accelerating, Nvidia K80

Pretrain + finetune
• GoogLeNet Model on ImageNet
• Finetune on our TB datasets

Proposed Approach: Training
Strategy



Learning with Purpose

Dataset: 4701 images from Peru
Two categories: Abnormal(4248 images) vs Normal (453
images)
Convolutional Neural Network(CNN)
• GoogLeNet Model
• Pre-trained on ImageNet, fine-tuned on our X-ray dataset
• Binary classification: 4/5 of the images for training, 1/5 of the

images for testing

Experimental Result(1)

# of iteration 10,000 30,000 50,000 80,000 100,000

Average
precision

82.8% 88.6% 89.0% 89.5% 89.6%

Table1: AveragePrecision for binary classification
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Dataset: 4701 images from Peru
Four categories, Same training strategy

Experimental Result(2)

# of iteration 10,000 30,000 50,000 80,000 100,000

Average
precision

43.48% 61.68% 61.92% 62.05% 62.07%

Table3: AveragePrecision for multi-‐class classification

Category(TB
Manifestation)

Total
Image #

Image # Used
for Training

Image # Used
for Testing

Cavitation 1182 946 246

Lymphadenopathy 202 162 40

Infiltration 2252 1802 450

Pleural Effusion 560 448 112
Table2: Data distribution for different TB manifestation
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Mobile technologies have the potential to
reduce the burden of TB for better
diagnosis.
Deep learning technology, especially CNN,
can further improve the classification
accuracy of X-ray images.
Our integrated system can reduce the
diagnosis time, within resource-poor and
marginalized communities.

Conclusion
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Continue to develop the large scale, real-
world X-ray TB database.
Improve the classification accuracy for the
deep learning computational models.
Implement a scalable solution by making
the mobile device based system available
as an open source platform
Conduct field-testing in tuberculosis clinics
in Peru.

Future Work
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Q&A

Thank you!
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